git and its History



Once upon a time there was diff

The Unix world (GNU, Linux) was heavily based on text files

- Text is always readable (it's friendly to men)

- Text is accessible for impaired people (it's friendly to all men)

» A simple editor can change any text file (it's friendly to machines)
- ASCII text is portable (it's friendly to all machines)

History, at last, is validating our views:

« All successful network protocols are text protocols
« HTML is a text format

« XML (depicted as the solution to all sins) is text

- ODF is text (though embodied in a zip file)

With every task, with every data, people need to know
what changes they accumulated while working

One of the first Unix programs was "diff"
- Diff assumes that text files are line-oriented
- The program reports to stdout the differences between two files
- Differences are shown as a textual printout



Diff generated patch

Baby diff could return commands for "ed", the editor:
- diff -e <oldfile> <newfile>

In his youth, he learnt to show context around differences

to be more pleasant for men:
- diff -c <oldfile> <newfile>

Once grown up, he learnt to be terse

to be more pleasant for machines and networks:
- diff -u <oldfile> <newfile>

The "patch” command, initially written by Larry Wall, uses

diff's output to change <oldfile> into <newfile>

* It's used to "patch” a wrong file into a correct one
- Patch files are just diff's output saved to file



And SCCS came. He made RCS, CVS, SVN

SCCS and his children keep track of versions and revisions

- They save all the revisions, by storing diffs

« The new ideas of "checkout” and "commit” appear

* Programmers can use symbolic names («tags»)

» The tools automatically generate version numbers (e.g.: 1.432)
- Every commit is augmented by a log message

CVS, quite widespread, is mainly just RCS over the network

« Its own files live in a centralized repository

- Several uses can concurrently access the repository to read or write
» The network protocol is simple

« Conlflicts are handled, though with some limitation

What's wrong with CVS:

- Revisions are only maintained within each individual file
« If you rename a file you loose its history

« If you split or merge files, you loose their history

- Committing several files is not an atomic operation



Hash, CRC, MD5, SHAT1, rsync, PowerPC

The idea of hashing predates diff and patch

- Theoretically, a hash is an injective, non-invertible, math function
 In practice, it's something that represents a file with a number
* It's a basic concept people study (and forget) in the first CS course

CRC32: polynomial algorithm run on a bit sequence
« The CRC in the "cksum” command is a Posix standard

MDS5: message digest, by Dan Rivest

- Hash algorithm returning 128 bits, decently secure

SHA1: secure hash algorithm (one)
- Hash algorithm returning 160 bits, more secure

rsync is a remarkable application of the hash idea

« It allows synchronization of files or file trees
« It only exchanges the differences, limiting network traffic

Even PowerPC virtual memory is based on a hash table

- Page tables are just one level (on x86 it was 2 levels, nhow 3)
- Memory size, and thus conflict rate, is configurable



Then Torvalds came, and Stallman got upset

Linus used to refuse SCM tools, for three reasons:

- CVS is crap
« CVS is real crap
* SVN ("cvs made the right way'') can't be but sweeter crap

Larry McVoy, a previous kernel/scm hacker in Sun, offers help

- He would write BitKeeper according to Linus' needs
- He would allow free software to use BitKeeper
- He would sell Bk with proprietary license terms

One year or so later Bk is ready, and the kernel starts using it

» Centralized repository on bkbits.net

- Restrictive license, repeatedly modified over time
- RMS and many of his area shout out in disgust

- Some core hackers refuse to use Bk

* Linus Is overall satisfied

But, as renown, power (of license) makes men greedy

- An "arch” developer was immediately revoked his Bk license
» Over time the license turned more and more restrictive, until...



Linus made git in his own resemblance

Git is a distributed version control system

« There is no centralized repository
« Each programmer gets hold of the whole history, locally
« If everyone pulls from Torvalds, it's just because he has the best bits

Git manages the whole project as a unit

* It doesn't keep separate history for each file
« It supports renaming, copying, merging, splitting

Each version is blessed with its own SHA1 hash
- There are no more sequential numbers that are hard to remember

Git has its own tools to share information over the network

« It has its own client/server network protocol to exchange data
« It can leverage on email as primary exchange channel



A different approach to file history

Git handles 4 different types of objects

* Files (called «blobs>»)

* Directories (called «trees»)
- Commits («commits»)

- Tags («tags»)

All objects are immutable

- Each object is identified by its own hash
- Git stores objects in a directory «objects», according to their hashes
- An object may include hashes that link other objects

The status and complete history of a file-set is identified by the

final commit in such history

« Every commit is represented by its SHA1 hash

« If two users own the same commit they automatically own the same files
To authenticate a file-set and history you just sign the hash



Branch management, merging, conflicts

A "branch” is one of several histories of the project

- Each programmer works on her own branch
« In a single directory a programmer usually hosts many branches
* No branch makes any reference to other branches

Branches are only compared when needed
- Every branch is independent, but when merging

There is no such thing as a main branch, like in SVN
« Actually, the concept of trunk is not applicable at all

Git only merges local branches or external patches

- Everything must be already committed
* No conflict can ever lead to information loss

We have tools to move branches or change past history

« git rebase
- git rebase -
« git commit --amend



They reconciled and lived happily ever after

Git is released as free software
« GNU GPL License

Most software projects are now relying on git

for their own development:
- Xorg
« LibreOffice
* busybox
- perl
- gt, gnome
- fedora
« fimpeg
* buildroot

And most "centralized” sites are not actually centralized.
« | rarely login into github, gitlab, bitbucket, ...



Notes about git "advanced" use (1/2)

Some useful features of git that are rarely used

- "git describe [--dirty]" to know where you are
- "git remote"” to have local references to other repositories
You can fetch all branches from a remote to a safe place
You can manually specify how to fetch and push to a remote
- "git cherry-pick™ to take an individual commit from a local branch
This is especially useful if you commit by file
Note that upstream wants commits by feature
- "git show <commit>:pathname”
- "git show <hash>"
You can recover any file from any commit or any diff
- "git diff c<commit> <pathname>
You can diff an individual file
« "git diff <hash> <hash>"
You can diff releases or files



Notes about git "advanced" use (2/2)

Other advanced commands that are very useful at times

- git blame

Show the guilty guy for each line of code
- git bisect

Find the faulty commit for a regression
» git merge-base <revs <rev>

Find the last common commit of two branches
- git filter-branch

Rewrite stuff keeping history
- git rebase -i

Change history at will
- git add -p

Select individual patches to be committed
« git commit --amend

Modify an existing commit
- git commit -C <rev>

Reuse a commit message



Useful Utilities

- git archive
Make a tar/zip file
- git grep
Faster alternative to grep -r
- git log
All kinds of loggin information
- git revert
Revert a commit (then you may "rebase -i")
- git stash
Park/unpark local modifications
- git describe
Print a human-reable name for the current status
- git fetch
| prefer "fetch” and "rebase” over "pull”: it's safer
- git format-patch
- git am
Generate patch files (email msgs) and apply them
» git submodule
Import another project as a checkout in a subdir



