The Development System

The Compiler and Linker

To compile a C source you perform 2 (or rather 4) steps
- cc (gcc) converts a source file into an object file
cpp is the preprocessor
ccl is the compiler proper
as is the assembler
* Id performs the final linking step

For simple programs, you can forget about those steps
+ gCC prg.c -o prqg

Normalmente, la compilazione
avviene cosi’

Static and Dynamic Libraries

Libraries can be static (.a) or dynamic (.so)

« the .a suffix means "archive”
such files are generated by "ar"
it's a very simple format
the archives are not bound to host executable files
"tar" is similar: it is the "tape archive”

* the .so suffix means "shared object”
the files are generated by "Id"” (or the gcc frontend)
the format is ELF, they are not generic archives

- Static libraries are easier to use

- Static libraries make debugging easier

* Dynamic libraries require less memory

- Using dynamic libraries in custom projects is not trivial

Executable Formats

A "binary format” is a file format for programs
- An executable is generally made up of three parts
.text: code proper
.data: initialized data
.bss: zeroed data
* Only the first two are saved to disk
* The "size” command shows the size of the program

ELF (executable and loadable format) offers:

- Arbitrary section nhames
« Any nhumber of sections
- Definition of object files, executables, libraries

Compiler and linker can build ELF files built as you like
- Especially, "Id" can be configured with an "ldscript”

uClinux has its own binary format ("flat™)

Make

The "make” program is used to "make" files

« It is configured by "makefile” or "Makefile"

« The makefile is written in a descriptive language

- Execution of each rule is based on file date and time
« It uses implied rules on file names

GNU make has some procedural features as well

- Conditional execution
ifdef
ifeq
- Immediate assighment (":="
« Incremental assignment ("'+="
- Conditional assignment ("'?="")

The Command Line of Make

The command "make sth” actually makes sth.
* "make -n sth” ("'not"’) does not make, but it shows what it would make
* "make -k sth” ("keep going") proceeds in case of error
- "make -j<h> sth"” ("'jobs") runs in parallel (for SMP)
- "make sth VAR=val" makes sth assigning "val" to "VAR"

There are some conventional targets

* "make all”" compiles

- "make install” installs

* "make clean" cleans the source tree (removing compiled code)
- "make distclean” makes things as clean as distributed

To know whether or not to make sth, make uses the date/time
of all prerequisite files

Make Variables

Make variables come from different sources

* the command line
» the makefile
« environment variables

Make uses a humber of predefined variables

« CC, CFLAGS (compiler and arguments)
- LD, LDFLAGS (linker and arguments)

- @, %, <, A (target, stem, dep.)

- MAKE (make and its own arguments)

Variables are only expanded when used
« Unless you use ":=", but please don't overdo

This is a simple makefile
CFLAGS = -02 -g -Wall

all: progl prog2

Make Rules

A makefile is a set of dependency rules
target: dep [dep ...]

cmd args

cmd2 args?2

Some targets can be defined as phony targets
.PHONY: all clean distclean

- Rule concatenation is automatic

 Commands must return 0 if they succeed

« When an error occurs, the graph is broken

- With good makefiles, "'make -j"" works pretty well

Implicit Rules

Rules for common operations are predefined
You can define new implicit rules

%.01ld: %.cC
cp $*.c $*.01ld

SRC = $(wildcard *.c)
old: $(SRC:.c=.01d)

"make -d" prints a lot of debugging information

Make and Integrated Environments

From within emacs, you can control make
« "M-x compile” runs an external command ("'make -k" by default)
» "C-x " (next-error) parses the command's output
- Grep can be called similarly ("M-x grep")

The same mechanism is used by all other IDEs
- They call an external process and capture its stdout/stderr
* They run a regexp con captured strings, to find errors
« They know of success/failure from the process’ return value

- Every program should report errors in the same way, for interoperability
A good simple way is: <prghames: <inputfile>: <line>: <error>

Objdump

To analyze object and and executable files, there is objdump

to disassemble: objdump -dr <file>

to see ELF headers: objdump -h <file>

to see an ELF section: objdump --full-contents
to see source and assembly: objdump -S

Objdump allows looking in binary files too
objdump -b binary -m arm -D <file>
objdump -b binary -m i386 --adjust-vma=<addr> -D <file>
« We can thus look at boot loader code
- We can look at a peripheral's firmware image

Inline assembly

gcc allows inline assembly in C sources or headers

- The code must interact with the optimizer

« The syntax is not trivial at all
asm("code® : r-output : r-input : r-clobber) ;

The "code” string can't use explicit register names
« You can use positional names (''%0") or symbolic names ("%[timeout]”)

The register lists (out and in) declare their C expressions

The list of clobbered registers can also include

 memory: it means memory external to the CPU has been modified
- c¢c: it means "condition code"” flags are modified by the asm code

Examples:
fdefine set cr(x) /* arm */ \
__asm____ _wvolatile ({ N
"mcr pl5, 0, %0, cl, cO, O @ set CR® N
: o "r® (X) : "cc")
#define mb () asm volatile ("" : : : "memory")
#define rdtsc (low,high) /* x86 */ asm("rdtsc® : "=a® (low), "=d" (high))

All documentation is part of the gcc manual

Cross-compilation

Cross Compilation: GNU/Linux Conventions

A cross-compiler is a compiler that creates executable code
for another processor

Building by yourself cross-code requires three parameters

--build (where iIs the code being built -- usually autodetected)
--host (where will the code be hosted)
--target (where will the code run)

Cross-compilation tools usually have a prefix in the filename

arm-linux-gcc arm-buildroot-linux-gnueabi-gcc
m68k-linux-gcc Im32-elf-gcc

Building the kernel:
make CROSS COMPILE=m68k-linux- ARCH=mé68knommu

Creating a Cross Compiler

To cross-compile, you need three packages
» binutils (assembler, linker)
» gcc (the compiler proper)
 glibc or another libc implementation
As a minimal fallback, you can use "newlib"

The steps to build the compiler are:
- compiling binutils
- compiling the bootstrap gcc
- compiling libc
- compiling the final gcc (with C++, Java etc)

Most embedded distributions nowadays build the compiler first

Still, you can build your own, especially for uC targets

Pre-Built and Crosstool-ng

A few developers or companies offer pre-built toolchains

- Unfortunately, the list is very volatile
* Refer to elinux for a "current” list
https://elinux.org/Toolchains

Another option is crosstool-ng

* Much more difficult than the original "crosstool”
- Kconfig based
- Reported to be reliable

For bare-metal (or kernel, or bootloader), distributions help

« A suitable arm-none-eabi-gcc is usually packaged
- Check your distribution for details

Please note the naming: "arm-none-eabi"
« The first word is the CPU family
- The second word is the host operating system

« The later (optional) words are variants
- We'll talk about ARM and EABI later on

Programs Included in Binutils

Tool-chain proper commands
« dS
- Id

Maintainance commands
- strip
- objcopy

Information retrivial commands
« objdump, nm
* size, strings

Most of the information is abstracted to libbifd

« The library offers An API to read/write an object file
- You can create a multi-platform objcopy
- Some distributions offer "binutils-multiarch”
It lacks AVR or LM32 support, but most CPU families are there

Cross Compiling Applications

Simple packages:
make CC=my-cross-gcc

Autotools packages:
CC=my-cross-gcc ./configure --prefix=/usr --host=arm-linux \
&& make && make install DESTDIR=/target

Special case: gdbserver (tested w/ version 9.1):
CC=my-cross-gcc /path/to/gdb-9.1/gdb/gdbserver/configure \
- -host=arm-linux --prefix=/usr \
&& make && make install DESTDIR=/target

Special case: gdb (tested w/version 9.1):

/path/to/gdb-9.1/configure --target=arm-linux \
- -prefix=/usr/local/cross-tools \
&& make && make i1nstall

Cross Compiling Bare-Metal systems

Most bare-metal systems follow the Linux tradition:

- The "CROSS COMPILE" variable sets the prefix
« The "ARCH" variable sets the top-level subtree

Also, most bare-metal systems are based on Kconfig

* You can "make defconfig" (depends on $ARCH)
- Mode defaults live in the configs/ subdir
« You can interactively change the configuration

"make config", "make oldconfig"”, "make menuconfig', ...

« The current configuration lives in .config (the output of configuring)
This Is an input file for make

A corresponding header is generated for C language

One problem with Kconfig is reproducing a build

« If it can fit, it makes sense to save .config in the binary
« This in addiion to the build commit, a mandatory item

Please consider setting up reproducible builds for your own OS

