Processes

Roles of an operating system

An operating system, or run-time library, should offer
- Timing features
« A memory abstraction
« Multitasking (processes)
- Storage primitives (filesystems)
» Device drivers (peripherals)

Please evaluate whether and how to implement malloc()/free()
- Our code base, so far, misses a memory API

And we now talk about processes

Definitions

Process: a sequence of instructions

« It performs some useful activity
« It may need to communicate with other processes
* It may need to communicate with I/O devices

« It may have some time constraints

Task: almost a process

Job: each activation of a task
* In the real-time and embedded world we prefer "task™
- A task is a sequence of operations with time constraints
- Most tasks are periodic (once job every 50ms, for example)
- Non-periodic tasks may be activated by events

Scheduler: the part of the OS that allocates the CPU to tasks

- A real-time scheduler is quite different from a general-purpose on
* The scheduler of a PC, or a server, must serve all processes fairly
An editor must respond quickly, which a compiler may lag
 In control systems you want stuff to happen for sure

And within a maximum allowed delay

More definitions

Release time: when a job becomes "active” (allowed to run)
Deadline: when the job must complete
WCET: worst case execution time, for a task

Scheduling algorithm: the policy set forth by the scheduler
Schedulability: property (or lack thereof) of a task set

- A set is schedulable (on a specific uC,...) if all constraints can be met

Load (U): amount of CPU time used by the tasks
Lateness: how much late we are (can be negative)

Jitter: well... jitter

Assumptions for scheduling algorithms

Classic literature solves the problem for this situation:

- Tasks are periodic

» Deadline == next release time

« The scheduler is preemptive

- Scheduling decisions have not cost

Then, for simplicity of representation:
- All times are multiples of a timer tick

Everything is simple and linear
* There are mathematical demonstrations for all schedulers

Simplifications can be lifted later
- And math becomes more complex

There are a number of interesting schedulers
« All of them are mathematically demonstrated

The two most impotrtant schedulers

RM (Rate Monotonic)

- The higher the rate, the higher the priority.
- When a task is released, it preempts any higher-period task

EDF (Earliest Deadline First)

- "Dynamic priority" (not fixed for each process)
- When a task is released, it preempts if its deadline is nearer

RM is simpler, EDF is better
« EDF guarantees schedulability up to U = 1

2

i

« RM

Task 1

Task 2

" EDF
U =0.500

Perior 12 |]
Cale 2 |[[_| |
Offsel 0 |_| |
Perioc 6 | | |
Calc 2 | _| |
Offsel 4 | | |

Examples

RM with a set of 3 tasks

3

i

« RM

Task 1

" EDF | | | | | | | | |

= 0,883

P?SEE 2 I_[__|u !:::‘h:}:‘h:::‘H:::‘h:::h:::‘h:}:h:::*:::‘h:::h:::‘h:}:h:::*:::h:::h

Offsel 0 | ||

P?SEE lzD I_[_|_u r-a-Fpa-a-a-a-a-h:::::::‘h:::::::'4':-F¢-¢-¢-¢-hh:::::::‘h:::::::'4':-Fa-a-a-a-a-h:::::::‘h:::::::'4':!

Task 2

Offsel 0 | ||

OO
Perior 20 | 1]
Calc 7 [_LI Mﬁ%ﬁ%ﬁ%ﬁ%ﬁu

Task 3

Offsel 0 | ||

EDF with the same task set

3

i

" RM

+ EDF | | | | | | ||||||||||||||||||||||||||||

L =0.B83

.
Periot & | ||
calc 2 [I__J WMMWMMWMM

Task 1

Task 2

Task 3

Offsel 0 | ||

P::a;iﬁ;c 120 I_[_|_u '-|-!:::::+:::H:::h:::::::+:H:::::h:::::::#:::::::+:H:::::+:::H:::h:::::::+:l
Offsel 0 |_| |

st E?D I L _I_IM:::!::+:M:::!::::+:::H:l:ﬂ::::+:::m:::!::+:m
Offsel 0 |_| |

More examples

RM example: task 3 fails

3

| R
« RM ~ EDF |* | * | | | | | | |

U =0973

Task 1 Pa;il?:t? i_l_[:|_|l_| .III*III*IH*III*III*IH*III*III*III*III*III*III*HI*III*III*HI*IH*HI*—F
Task2 Cale 3 [|| memmm#mm
Offsel 0 |_| |

|
Perior 11 | ||
Task3 cale 3 [_|_| %%MMMMMWM

Offsel 0 | ||

EDF example: the same set is schedulable

3

— | O O S Ei U SUUSUUUE TS F N SRS SR S NEE T S——
" RM + EDF

U =009873

.
Periot 5 | L]
Task1 Cale | LMM%MM#%MMM

Offsel | ||

Task 2 P::a;iﬁ;c 2 I_[__ITI mm%%::#::h:&mm::hﬁ!

Offsel | ||

Task 3 st 131 I_[_|_I_I ':::M:H::::Hl:+!:::H::+!:::*::+:H:l:!:+::ﬂ:::!+::H—!:::‘h:l:!:::*::

Offsel 0 | ||

Offline scheduling

Complex algorithms fit complex problems
- Many tasks, long WCET, serious processing power, ...

But most real-world situations are much simpler

« Critical tasks feature a small WCET but are jitter-sensitive
- The number of critical tasks is limited
« Their period is usually "compatible” one another
e.d.: oms, 10ms, 50ms
« Jitter should be limited, ideally zero

This is best solved by manual placement of release times
« Which still requires a sort of scheduler, to manage context switches

2

—IT S A
T RM t« EDF

I =10.,300

Task 1 Pgerzil?:cz I_TI_TI !IIhIlhlIhIlhlIhIlhlIhIlhllhllhllhllhllhllhllhIlhllhllh

Offsel 0 | ||

Task 2 sz: 11[JI I_[_|_u :::::}::‘h:::::}::‘h:::::}::‘h:::::}::‘h:::::I::‘h:::::}::‘h:::::}::‘h:::::}::‘h:::::}::

Offsel 3 | |

Setting up a task

The "classic” approach to RT tasks is as follows:

void random task(some_ arg)

{
init this () ;
init that;

while (1) {
work on this () ;
work on that;:

os wait next period();

Beautiful, isn't it?

No, not beautiful at all

This code prevents generic inspection of process status
* Process status is in local variables

It requires full context-switch support
* Multiple stacks

- Saving and restoring all registers
* ... even if we implement no preemption

void random_task(some arg)

Scheduler structures are opaque f

init _this():
init that:

Init time Is unclean wmite (U L
- Some task may be initializing work_on_that;
while other tasks are already running

os_walt _next periocd():

Turning it inside out

By noting that init and job are separate, we can do:

struct task {
char *name; void *arg;
int (*init) (void *arg, struct task *t);
int (*job) (void *arg, struct task #*t);
unsigned long nextrun, period;

};:
struct task task temperature = { ... };

DECLARE TASK (task temperature); /* creates entry in ELF section */

The code above can be made better (please suggest), but:

« It uses a single stack
* You can look at (or change) task status
* You can add extra info in the same structure.

Even if some experts dislike this, some love it like | do

And we can add preemption later (with a single stack)

The scheduler

With the task structure just described
- Where init and job and separate
 Where we rely on an ELF section

... the scheduler is trivial

while (1) {
for (best = t = task first; t < task last; t++)
if (time before(t->nextrun, best->nextrun)
best = t;
while (time before(jiffies, best->nexrun)
best->job (best->arg, best); /* maybe use retval */
best->nextrun += best->period; /* BUG! */

And we can expand on this over time
- But please remember to keep it simple, or you loose

Long and background tasks

What we miss in the previous approach is

- Support for tasks that must use all "free” CPU time
- Support for the random "long" job duration

Typical "long"” tasks:
« A command shell on the serial port

» Data communication, over serial or USB (or whatever)
- To support that, we really need preemption

We can special-case some of them
- We accept that the console is just a debugging tool
It can temporary halt scheduling
And we know for sure it won't run in production

But data communication takes time

- We must prepare our frames, possibly with printf too

- This happens rarely, but then it's a few hundred microseconds
« Or even several milliseconds on the UART port

Aperiodic servers

There are several textbook options for aperiodic tasks

The most easy to model: polling server

It behaves like a periodic task, which serves aperiodic activities
Definitely, it requires preemption and a real scheduler

The most easy to implement: background server
A process that uses all otherwise-unused CPU time
Again, it must be preempted by "real” jobs.
We might accept to special-case it (see above)

Playing with aperiodic requests

In the www repository, directory tools/, you find "scheser"”

It shows graphically three servers for async requests
- Background server

« Polling server
» Deferrable server

Below is an example with the "background server” (and RM)

2

L _-|-|-|-|-|-|-F-|-|-|-F-|-|-F:::::::: !l!!!!F-'-H-F-'-'-F!!!I!!!! ::::::F-u-H-H-u-u-F-u-u-u-H-u-H-F
s RM " EDF F F

" none « BS " PS DS
U =0233
Perior 20 |]

Server Cale O [_|_| ::!!:!!!!!!!!:.H—“!!!::!!:!!H—I’!‘!‘}:!‘!T!!h!!::!!:!!!!!!!!::!!!!!!!:!!!!"
Offsel 0 |_| |
Perioc 10 |]

Task 1 Cale 1 [_| | I::::::::*::::::::*::::::::*::::::::*::::::::*::::::::*::::::::*::::::::*::::::::*—»
Offsel 0 |_| |
Perioc 15 | 1

Task2 Cale 2 [J_I_| r'-::””I:”:h”I””:””+-::””I””h”I””::”:+-::””I””h”l::”:””]t-

Offsel 0 | ||

