|2¢ and SPI

[2C and SPI are two peripheral busses

Both are synchronous serial lines
- Synchronous means that the clock is delivered with the signal

« The serial port it _a_synchronous
UART = Universal Asynchronous Receiver Transmitter

They replaced the "textbook" legacy data bus / address bus

- Such interfaces are complex to manage, and requires many tracks
- Nowadays they are only used for RAM, and little else

Another interesting bus is "OneWire", that we won't cover today

A simple summary, that encompasses everything:

- UART (RS232) is two wires, asynchronous, point to point.
» |2C is two wires, one master and slaves

» SPIl is three wires + enable, one master and slaves

» OneWire is one wire (+ GND), one master and slaves

[2C: General

Patented by Philips ages ago.
- Patents are supposed to be expired, but nobody knows for sure.
* Do not read patent documents. You get infected. And quilty.
- TWI, SMBUS and other names are the same thing.
IF you use TWI you can claim it's not 12C.

The name means "Inter Intgrated Circuit” bus: lIC, or 12C.
- Originalli 100kb/s, then 400kb/s, now 1MB/s

Two lines, plus power and ground:
« SCL: serial clock, open-drain, pulled up by a resistor
- SDA: serial data, open-drain, pulled up by a resistor

SDA can only move while SCL is low

- There is only one exception: the "start” condition
- And there is only one more exception: the "stop” condition

[2C: Electrical

|12C is very simple, you only need to master it

0V and 3.3 Volts. Or whatever

- Just agree about the positive level with your peripherals.

- No special impedance requirement (lines are short anyways)

- The timing is driven by the master, no special requirement
Only, don't be too fast

You can drive 12C from GPIO

« It works if your GPIO pins are open-drain.
- But it also works if you can switch between input and output-low

You usually can't be an 12C slave through GPIO

- You need to obey master timing choices

If something goes wrong, the oscilloscope helps, as usual
- Even a TDC (a logic analyzer) can help, but not for all bugs.

[2C In LPCTTUxx

Our microcontroller includes an 12C controller
« It is on pins 15 and 16
The pins are open-drain (no output-1 capability)
The only pins without an internal pull-up

You can run as many I2C buses as you want, one GPIO pins

- Just set the GPIO data registerto 0
- Then toggle between input and output mode

Other (older) LPC11 devices are much more braindead

 When you turn from input to output, the pin value is preserved
They help you to prevent glitches
They prevent you from doing anything useful

- So pins 15 and 16 are open-drain as a bug-fix for this
Two bugs sometimes cancel one another, but they remain bugs

[2C Framing

Communication is byte-based, with an ack bit

 When the master transmits, the slave must ack or nack
» When the slave transmits, the master must ack or nack

Everything starts with "start”
Everything stops with "stop”

Frames are master-driven, and each addresses a single slave
* There is no such thing as auto-detection
« Still you can probe for slave presence
Send its address, look for ack, abort

[2C Addressing

Devices feature a 7-bit address, plus one R/W bit

- The R/W bit is the LSB

* You never know if people talks 7 or 8 bits

» Chip documentation usually hides the address very well
You read from page 1 to page "end”, so not a problem

Write frame:

- Start + WAddress
- Data out (0 or more bytes), then Stop

Read frame

» Start + WAddress

« Internal address (0 or more bytes) (no stop)
- Start + RAddress

- Data in (0 or more bytes), then stop

Some addresses are reserved for some special things
- Who cares, we are only master

[2C signals (eventually!)

SDA

Signals are driven from the master, but during ACK the SDA line is driven by the slave

AWiwiwiwiwiwiwi

/\

[

start

N\

stop

0x40 (write address for 0x20) ack more data
Lacal 12C RE?Ei'r'fH:I T4 hhR4SF +ET
+3 é AD vdd E
f w e seifese]
13 —FH% enn Cs | B SBA

CHED]E
] PCFASEET A5
15 wdd

RETSLY40 |
OSCO CLED =

b= |
7
-—I_;%INT* su%ﬂu

GHD o) RPN

Uz
RTC: Bus addrese 4x51 (a2/83)

EEFROM: Bus address x50 (ad/al)

So&
gabl]

LM75ED
| LS ¥ oy T
Zl5rL B0
T 035 el B
4 5

L3

‘:I;n— GO a2

Therma: Bus address Ox43 {9091}

J—aa

T

U4

T

SPI: Serial Peripheral interface

Based on 4 wires

» SCKL (serial clock), MISO (master in slave out), MOSI, SSEL
» The bus is synchronous

* No line is bidirectional

« Usually run at a few MHz

No addressing defined

- You need a chip-select for each slave
* This can be called SSEL (slave select), SS or CS

SCLK » SCLK
SPI MOSI > MOSI SPI
Master mSD 4 ESD Slave

55 ¢ 55

SPI: Electrical

There is no special electrical requirement
- But according to you working speed you need to care about
Capacitive coupling
Bounces

Usually transmission happens at 0/3.3V, but it is variable

« Like what happens with 12C, you must agree with the peripheral
- Most peripherals nowadays are 2.7-3.6V or 1.7-3.6V

4 modes or operation are supported:
« CPOL (clock polarity) can be either one
- CPHA (clock phase) can be either one
« This is a serious problem when you connect more than 1 device

Fortunately, SSEL is always active low

- But sometimes you must pulse it high among words
« And sometimes you must keep it low for the whole transaction
- And always is not really always

SPI'Iin LPCT1Uxx

Our microcontroller family has 2 SPI controllers

« Then, MISO, MOSI and SCK can sometimes be routed to different pins
« They work as either master or slave (most uC do the same)

The logic cell includes a FIFO (everyone does)

 This allows some CPU relief
- You can manage an uninterrupted data stream

You can also do bit-banging SPI

« There are no specific GPIO requirements
* Bit-banging is slow, and not usually a wise choice
« A single SPI master can drive many peripherals, so we don't need more buses

| personally prefer driving SSEL from a GPIO pin

- You can have as many CS as you need, independent of hw features
* You can implement whatever policy for CS activation

SPI: Framing

There is no standard framing at all
« Unlike 12C, the bus is not shared, so there is no protocol
The bus is shared, but the individual CS is not
Every communication event is one-to-one

The structure of a frame depends on the peripheral

* Flash memory uses a command-response protocol
It's half-duplex, and usually you fill with Oxff

« With ADC chips, communication is usually full-duplex
You send parameters for the next sample while reading the previous one
Most often, the ADC speed is set by the SPI speed

- Some ADC devices use two CS lines, and one is active high.

- Some other chips offer a register array, and an IRQ pin

And there is the usual issue of CS policies.
- As usual, read the whole data sheet before routing/coding

SPI: Variations on the base idea

Currently, quad-spi (QSPI, QPI) flash memory is common

» Same basics as SPI, but with 4 data lines
« Usually, commands are on MOSI and data is by nibbles
» The chip may support dual-SPI too
The hardware designer must trade between tracks and speed

Some devices provide ol mou) (T,
: : Master MISO [« MISO Slave
for s_trangﬁ; daisy-chain ==)| &<
configurations
- Tey act like one device, +—» SCLK
e.g. many ADC channels > ﬂfé?:! S;EETE
- Very handy, but not trivial | » 5SS
to get right
—»| SCLK
| MOSI SP|
MISO Slave
» SS

SPI: API

By its features, SPI doesn't properly fit read()/write()

- You must always read back as many bytes as you wrote

You may setup a socket interface
* For any outcoing packet you receive an incoming one

Still, some devices (e.g. flash) work half duplex

- You can write and avoid reading back the empty reply
* You can read without filling a write bulifer

So my choice is using this function as main engine:

int spi xfer(struct spi _dev *dev, enum spi flags flags,
const struct spi_ibuf *ibuf, struct spi obuf *obuf);

This works both for SPI master and SPI slave
« And either of ibuf and obuf can be NULL

SPI: Device API

Besides the transfer, we need an abstraction for the device

- We may rely on the fact that read-only memory is cheaper
- We must support various pin configurations

#define SPI_CS (x) (-1 - (x)) /* arg is 0.., value is negative */
#define _ SPI_IS HW_CS(x) ((x) < 0)
#define SPI GET HW CS(x) (-(x) - 1)

/* This 1s an interface for SPI, master and slave */
struct spi_cfg {

int gpio_cs; /* Either GPIO number or SPI_CS(x) */
int freq; /* Suggested frequency */
int timeout:; /* Jiffies */

unsigned long flags;
uint8 t pol, phase, bits, devn; /* devn selects spi0 or spil or more */

/* This would be copaque if we had malloc */
struct spi_dev {

const struct spi cfg *cfg;

unsigned long base; int current freq;
}:
extern struct spi dev *spi create(struct spi dev *cfqg);
extern void spi destroy(struct spi_dev *dev);

UART and variations thereof

The UART standard

Standard EIA RS-232-C, Electronic Industries Alliance

* First released in 1969, then updated.

It is a synchronous serial protocol

Features

« A single transmit wire, at the following bps rates:
Obsolete: 300, 600, 1200, 2400, 4800
Common: 9600, 19200, 38400, 57600, 115200
Rare: 230400, 460800
Common (on-pcb): 1000000, 2000000, 4000000
- One 'start’ bit and one or two 'stop’ bits (usually 1)
« Optinal parity bit - rarely used
* So every byte is 10 bits long

The associated logic block is called UART, sometimes USART

« UART: Universal Asyncronous Receiver/Transmitter
« USART: Universal Synchronous/Asyncronous Receiver/Transmitter

UART features

Usually, the UART logic block offers:

« An interrupt for tx-byte and rx-byte
- Two FIFOs, for input and output (8, 16, 64 byte)
* FIFO-related interrupts, with configurable thresholds

To run a UART device, you need to provide a clock signal

- Usually, the clock frequency is 16 times the bit rate

« If your UART is in-uC, you usually have a clock divider

- External UART devices feature a divisor and associated registers
« The clock doesn't need to be very sharp (4% error is acceptable)

The standard shows its age: DTE and DCE are different

- To connect two DTE devices you need to swap wires

Usually there is RTS/CTS handshake (hardware flow control)

* And sometimes there is XON/XOFF handlshake (software flow control)

UART: low level interface

A simple UART is just a few registers w/ a few bits

- Some bits for baud rate and parity

- A few bits for interrupt control

« A status register

- One RX register and one TX register

Minimal code is as follows (warning: serious style bug!)

volid tx (char c)

{
while (STATUSREG & TXBUSY)

TXREG = c;
}

int rx(void)
{
if (! STATUSREG & RXFULL)
return -1;
retrun RXREG;

UART: logic levels

The RS232 signhal wire features two logic levels:
« =10V (mark, binary 1)
- +10V (space, binary 0)
* OV is not a valid level

Bit in practice the threshold is usually +1 or +2 volts

Serial ports In all processors are 0/3.3V ("TTL levels™)
- You need an external level translator

- the most common devices are the MAX232 and MAX3232
But in practice every vendor has its own 232 e 3232

A catch-all pinout for the 9-pin connector (DCE-DCE)
« pin 1 shorted to pins4e 6
« pin 7 shorted to pin 8

- pins 2 and 3 crossed, pin 5 (GND) is shared.

RS-422 e RS-485

RS-422 (EIA-422, TIA-422)
* Differential point-to-point communication (4 wires)
- Voltage: +/- 5V (from 2V up to 10V), 4kOhm load on RX side
- Up to 10 receivers for each transmitter
» 100kb over 1200m, 10Mb over 12 m

RS-485 (EIA-485, TIA-485)

« Multi-point differential communication (2 wires)
A single transmitter at a time

« Differential signalling (1.5V to 5V)

- Up to 32 devices on each bus

* 100kb su 1200m, 10Mb su 12m

This 485 variant is the most used industrially

« If you connect to a UART, you use RTS or CTS or a GPIO
There are external transceivers

Some UARTS have internal RS485 support
» The TX-off timing is a critical factor

