Configuration (and bugs)



KISS Principle

Simple approaches are more robust than complex ones
* You can fully understand the solution
* ... which automatically leads to fewer bugs

Bugs grow with the square of the lines of code

- Thus, modular designs feature fewer bugs than monolitic ones
« It's always a trade-off between modular desigh and speed

Every "if" statement doubles the possible code paths
- Does it mean that bugs grow exponentially with conditionals?
- Beware of conditionals. They bite back. Always.
- Every code path must be tested



Sometimes complex wins over simple

A single complex solution is better than many simple ones

« If everybody uses the same code, everybody wins

« Even if there may be some performance cost

- Sometimes the compiler can optimize away complexity
___builtin_constant_p() often helps
or structures that downgrade to identity assignments

Example: Linux virtual memory

- The various CPU types organized their pate tables in 1, 2, 3 or 4 levels.
« Linux code is working with 4 levels, always.

The same code is used for all CPU architectures

Code is laid out so to optimize away some levels

Design a generic API that covers all cases

- This avoid conditionals in the calling code
- Then, some back-end may miss some features and error out



Build time configuration

Every more-than-trivial project needs configuration

« The target environment may be XorY

« The host environment may be A or B

- And some user choices may apply
You need to include or remove some features
You need to enable or disable some diagnostics

Build-time configuration is the source of countless bugs

- Some configuration is rarely built
Some configuration is never built, actually
Un-polished code rusts, and then fails if you run it
- Some combination is not even allowed

Please limit the number of options
- Better, arrange for all options to be build-tested every time

This is why In fsmos | try to build all source files

« The linker then discards what Is not used
« If your build takes minutes, or hours, please reconsider



The auto-tools way (a quick rant)

./configure --with-this --without-that --option=foo

A zillion languages

- configure.ac Is written in M4
- configure is unadorned sh (= binary file)
» Makefile.am is written in god-knows-what

If it breaks, you are lost

No way to ship a configuration to the user
* You can ship a over-long command line
- Actually, your developer rarely offers serious built-time config
« Which may be a plus: fewer options means fewer bugs



The Kconfig way

Kconfig/Kbuild is a complex beast

« It is a set of Makefile rules and dependencies
- Somebody complained that instead of augmenting make, we should replace it
Those developers eventually surrendered and used Kconfig

But the Kconfig language is simple

« It is documented in the kernel sources
Documentation/kbuild/kconfig-language.txt
- But it's so easy that for most things you can just copy other Kconfig files

You can configure with any out of a range of tools
- config, menuconfig, nconfig, qconfig, gconfig, ...

The output is a text file

* You can ship configuration examples
- And you easily apply a predefined configuration



Then, Kconfig shapes the Makefile

Using the "y" trick you turn 3-lines conditionals into 1 line
- 0bj-$(CONFIG_FOO) += foo.0
- cflags-$(CONFIG_BAR) += -DBAR

Kconfig appears to suggest use of #ifdef/#endif
- Please avoid #ifdef, it's the source of most bugs in C

With proper Kconfig values (int, not bool) you can do better
 Remember that no code is emitted for "if (0)" blocks

If any, can turn #ifdef into a constant in your own file

Possibly, use the compiler's help
« __builtin_constant_p() for example



Kconfig useful rules

make config

make menuconfig
- Asks questions your should reply to

make defconfig (*_defconfig)
- Apply a predefined configuration

make oldconfig
- Applies current .config, asking only unanswered questions

More options, not in the current code base:
- make randconfig
Randomize, to build-test in a loop
- make allyesconfig
All yes, where possible
- make allnoconfig
All no, where possible



Emitting errors

In a project, you can fail in several ways:
« Fail at build time (compilation error)
« Fail at init time (early run-time)
 Fail at run-time
» Misbehave with no hard failure

A build failure is to be preferred, whenever possible
- You save a lot of time if you error out early

How to fail at build time

« Complain with #warning/#error (on condition)
- Overflow ram/stack at build time (on mishap)

- Refer to an undefined symbol (on condition)

- Create an array of negative size (on condition)

#define BUILD BUG ON(condition)
((void) sizeof (char[l - 2*!! (condition)]))




Failing at run time

A run-time failure is worse than a build-time failure
* You need to install and run the binary to just fail...

Failing at init time is preferred
- ... if you are unable to fail al build time
« Init time Is not performance-critical *at all*
- If RAM/flash allows, please be verbose in your messages

Sometimes you can trust your caller and avoid checks
- For example, gpio_set/gpio_get, after checking at init time
« Or you can offer the double API:
__some_function() doesn't check
some_function() checks arguments, and is slower

Any "assert” or "panic” in a critical path is a cost

- Assertions can be a build-time option
« Or you can think about a faster way to do BUG()



Diagnostics

Never remove diagnhostics

« You can't rebuild and reflash just to debug
- Especially if the problem happens rarely

Diagnostics can be disabled, but should not be removed

- Reporting to the user is the most time-consuming task

- You can enable diagnostics on demand

- Still, having two different performance figures is bad
Sometimes, you can leave everything on all the time
Which save a scaring "if" as well

« Collecting information is useful anyways
You may save diags to a hidden log file

And never say never
- If RAM/flash is an issue, you can choose to build without diagnhostics
- A diag-less build may fit a smaller CPU model
* A bugless system requires no diagnostics at all



Testing

You should test all of your lines of code

- Especially error paths

Really: fake all errors and check the outcome

Whe you have a bug, you can’'t debug your error management too
« Any "if" is one test-run more in your way to delivery

Which doesn’t mean | support "test-driven programming”

* To be honest, | see the rationale behind TDD
- But the true gospel of TDD Kkills creativity

And please remember to test corner cases

* Run-time is the best testing environment

« If come scary code is unlikely to run, make it frequent
Scared about overflows? Start at Oxffff
Scared about 64-bit ops? Shift your data up

« "l hope it won't happen” leads to failure



